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4 Quantym Mochanjcal Model for Use by SEAC
ipn_the Calculatiop of Chemjcal Transition Frobabilitles

Introduction

The work at Hydrocarbon Research, Inc. under Contract
R.ONR~.737 with the Office of Ravul Research has been devoted to
the development of transition probabilities for displacement reac-
tions in a form suitable for calculaticn on large scale automatic
computing machinery., The formulation of the transition probabili.
tles 1s based upon the quantum theory of chemical kinetics developed
previously by the authors(l), The present vork is part of a combined
experimental and theoretical study of hydrogen-oxygen flames carried
out jointly by Bydrocarbon Research, Inc. and the National Bureau
of Standards, and the calculations based upon the model described
here are to be carrled out on SEAC, the aviomatic computzr of the
Bureau of Standards. Final coding of the problem for SEAC i3 cur-

rently belng performed at the Computation laboratory of the Bureau.
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(1) s, Golden and A. M, Peiser, "The Quantum Mechanics of Chemical
Kinetics of Homogeneous Gas Phase Reactions", J. Chem. Phys.
(17) 1949, pp. 630-643. ‘fne model used here dif srz from the
earlier omne im several lmportant ieys, in particuler with re-
gard to the trsatment of the scattering and the chemical
potentials,
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The iwmediate objective has been to provide a meana of

calculating transition probabilities for the reactions

0, + B OH+ O

H, + 0 ——3 OB + B,
but the formulation is sufficiently general so that it may be ap-
plied to a large class of displacement reactions.

The principal aim of the present work has been te arrive
at a method of computation that (1) would not require machine capacity
in excess of that of SEAC, and (2) could be carried out on SEAC in
minimal time. We have succeeded in satisfying the first of these
requirements. Precise statements concerning computing time cannot
be made until the coding is completed, but the representatives cf
the Computation laboretory have estimated that a singie transition
{from a given vibration-rotation ctate of the reactants to a givea
vitration-rotation state of the products) can be computed in under
five minutes., On this basis, it appeara that 40 -~ 50 hours of
computing time will be required to calculate a given reaction at a

given temperature.

The Mathematicsal Model
The formula for computing a given transition probability,

which has been arrived at as the resalt 7 precious studies, may
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T = temperature, °K,
n, = = quantums npumbers corresponding to vibration for
initial and final molecules, respectively;
K, L = quantum numbers corresponding to rotation for

dnitial and final molecules, respectively;

normalized Hermite pnlynomial of order n;

hp(x)

}\ (x)

spherical Bessel function of order A 5

} A(x) = If' J:‘ (%)

Fg(u)
Ey, E2 = discrete energy levels for initial and final

legendre polynomial of order s;

molecule, respectively .
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The quantities &4, By, ay, by, 04, 1 =1, 2,denote constants which
are determined from the physical propertiea of the aystem. Defini-
tions of these constants, together with their numerical values for
the hydrogen-oxypen reaction, are given in Appendix I. The quanti-
ties 43, 8 =0, 1, 2, ... dezote the coefficients in the expansion

in a legendre series of the perturbation potential assumed responsible



for chemical transition, namely,
b

31/?:\%? A (.a.«a--‘—) = j:":‘:
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where :f > :7“ denote the vectors jJoining the atoms of the initial
and final molecules, respectively. HNumerical values of the &'s are
given in Appendix I,
In the cases of interest, it has been found that, to a good
eppreximation, one may take Ay = O for 8> 3. This assumption leads
to considerable simplification in the calculations, for them the
quantities CXY vanish wless |k - I{<3, j1-xig3.
From the computational point of view, the two major dif-
ficulties are the calculation of the double integral C; and the evaluan-

tion of the appropriate Bessel functions. We shall consider these

in turn.
Evaluation of the Double Integral

Various analytical methods were employed in an effort to
reduce the doubls integral in G to a convenlent computing form, wut
we were unable to obtain any suitabls results, It seems unlikely
that one could find a closed form for G, nn:d the various efforts to
expand in a serles led to slowly converging terms of very great com-
ple;:lt.y~ Accordingly, it hae been duclided to evaluate G directly

by means of numerical quadrature.



It‘vill be seen that this approach places the burden of
the work on the calculation of large numbers of Bessel functions.
Thus, it becomes important to use a quadrature formula which requires

the fewest possible number of points. In view of the welght function

exp[ - -ﬁ ( otz + ,02') _l which appeers in the integrand, the
uppropriate integration formula to use here is the Gause-type quadra-
ture based upcen the Hermite polynomials.(z)

The optimum number of points to be used in this quadrature
has been estimsted by examination of the errors obtained in the nu~
morical integration. For integrands with parameters in the range of
interest of the hydrogen~oxygen resctions, and for transitions up
to the third excited vibraticnal level {m, o = 0, 1, 2, 3), we have
found that the error resulting from & six~point quadrature formmla
4n each varisble is well less than half of one percent. A five-
point formula was found to yleld errors up to ten percent, particu-
larly at the higher vibratioral lavels. Accordingly, the double in-
tegrals in G will be evaluated by means of the six-point formuls,

thus requiring that each integrand be evaluated at 36 points.

MO B an e W @ T G TR wm @ oy T T S G P P @ e wm N D W @ W 9 @s e W

(2) B, E, Selszer, R, Zucker, and R. Capuano, "Tables of the Zeros
and Weight Factors of the First Twenty Hormite Polynomials®,
J. Research Nat. Bur. Stds., (48) 1952 pp. 111-116,
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The final integration for the treamsition probsbility will
bte performed by msans of a Gauss-type quadrature based upon the
laguarre polynomials {3) » After suitubie rearrangement, the transi-

tion probability will then be calculated on SEAC in the following

form:
o Q - 5 e (£, F)
Pm. T R =
T.L
M K Y
Z ‘1(‘;"2 Ce [ . >
! £, L
where
B« 2 oo (5 (ot £ (0 )
A4

Xy = B,UT/L«.;* oy (0,%) A

B YT § ey — men {0,3) ;
fa,r = f»;.(“‘ %)—2"(44) 5
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(3) H. E, Salzer and R, Zucker, "Tablez of the 2eror and Welght
Factors of the First Fifteen laguerre Polynomials®, Bull.
Amer. Math Soc., (55) 1949, pp,1004~1012,
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Y = abscissa for laguerre quadrature!

weight for laguerre guadrature;

e}
[
4

Fa

abscissa for Hermite quadrature;

Py = weight for Hermite quadrature.
Thes quantity Q ia defined in Appendix 1.

It will be observed that with this formulation, it is
necessary to calculate each Baessel functiom for M? values of its
argument. If we assume, as above, that the constants Cﬂ‘ vanlish
unless lk-L'S. 3, ‘I-K)g 3, then, in each case, seven values of
k and of 1 must be considered. With this range of k and 1, and with
B =M= 6, a total of about 3,000 Bessel functions is required for
each transition. This would be prohibitive without fairly simple

approximations to the Bessel functions in the range of interest.

E Beassel Fupet
For the hydrogen-oxygen reactinns, the Bessel functions
}p (x) occur with parameters roughly in the range

P> 12, 1/2< £ <2,

Asymptotic formulas for Bessel functions of large order and
argument are well-knovn(k), both for the case x<p and x»p. The

accuracy of the formulas decreases as x <% p, however, and rather
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{4) G. H. Watson, "Bessel Functiona", Cambridge, 1945, Chap, VIII,



than add higher order approximations we have found it expedient to
develop new formulas for the region x 22p. By comparing the errurs
in the various approximationa, we have found that the standard asymp-
totic formulas could be used in the reglons x/p < 0.85, x/p3>1.15,
and the new formula in the region 0.85< x/p<l.15, with a maximum
evror of about five percent. The largest errors occur in narrou
bande about the values x/p = 1 4 0.15, and for only the smaller values
of p (p=12), with the er.ors decreasing sharply away from thes:
points. It is felt that errors in the integrations resulting from
these approximations should not exceed about two percent. The formm-
las used in the computation of the Bessel f unctions are given in
Appendix 1I,

The propesrties of the quantity cﬁ' assumed abova emable
us to meke a substantial redusction in the number of Bessel functions
that need be computed. The orders of the Bessel functions have the
form ﬁ—: m vhere C is a large constunt (C > 150, say) and
since we mwst have |k-L{%3, there is only a emall porcentage varia-
tion in tho orders withip a given transition. Indeed, as k ranges
from L to L+ 3, the order of the Bessel function will increase
by less than ten percent. This suggests that tor {k-qi 3,94\)((1)
can be obtained by means of an appropriate expansion about }AL(") .
We have developed approximate formulas for calculating }p(l«) (x)
in terms of 9;’(‘) vhich, in the range of interest are in error by
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at most about five percent for p 2212 with the error decreasing
sharply with incraeasing p. It is felt that this approximation should
result in errors notl exceeding about two percent excsept possibly

for the lowest rotational states where the error might be as high

as five percent. The approximations .re given in Appendix II.

It will be observed that, with this simplification, only
one-seventh of the Bessel functions need be computed directly from
the asymptotic formulas given above. Since a large portion of the
computing time is devoted to the calculation of Bessel fumctions,
this results ir a major reduction in machine time for the problen,
Indeed, withcut some approximation of this sort, the computing time
for the procedurs outlined here would be prohibitive,
Bemarks cp Coding

The work of coklpng the present calculation for SEAC
begins with the formulaliou presented here. The major difficulities
encountered in the coding have been chiefly concerned with storage
limitations of the machine. In crder not to oxceed the machine
capacity, it bas been necessary to devise several flexible calculat-
ing routines that could be used for more than one purpose. Thus;
for example, a single routine has been set up for calculating)p(x)

in both regions x/p<0.85 and x/p > 1.15,
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The development of these procedures has been carried on
Jointly by representatives of Hydrocarbon Research, Inc. and tha
COnputatiOA laboratory. At the present time, all of the major
planning problems have been resolved, and the remainder of the
work at the Computation Laboratory will be concerned with putting
the various segments ihto a contiguous unit and with final checidng

of the code on SEAC,
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A = 2]
The physical constants employsd in the calculation of the

transition probabilities are defined as followss
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Boltzmann ‘s constant..

oquilibrium distance betweon atoms of initial molacule

equilibrium distance between atoms of final moleouls.

fundamental vibrution frequency of the initial molecula,

fundamental vibration frequency of the final molecule.

moaent of inertia of initial molecule,

xass of final atom ,

mass of initial atom .

mass of exchanging aton.

tima

region of normalization of the wave fumctions.
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The numerical values of the constants for the hydrogen- -

reactions are glven below:

02413-—-)-08#0 H2$0—9084-B
on V5
, CRY -3173 - 3660
5 (UK) - 7406 +3291
,01633 -04593
.04066 07448
,06201 .07278
-004574 ~05551
23.47 6.0155
9.9434 9.943.
13.1 17.6
37.8 12.8

For the reaction O, + HE— O + O,

2

El . 21000 [2.,22&; + .002059 K (K + 1)]
KT T 1)

Ep - 1000 [5.2521“ 202664 L (L« 1) + 9.1623
KT T

For the reaction H «+ 0 - 0H + B,

L}

E; = 1000
iérl e [6*1593 + .08497 K (K + 1) ]3

Ex . 2000 [5,252n + ,02664L (L + 1) + 2.,1295]u
¥r T -
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There is considerable wncertainty in the form to be em~
ployed for the ohemical perturbation potential H(3,%). Ve have

found it convenient to fit this potential in the form

}/(f};{) = K, A-—-R(xw))
¥ = _?—’—-1—— ) = e X% [

Here, gand-")idanote the vectors joinlng the atoms of the initial
and final molecules, respecstively. In this form, it will be noted
that, for large R, the bulk of the contribution comes in the neich-
borhood of x = - 1, corresponding to a linear configuration of the
three atoms. The extent to which the contribution 1s limited to

this region depends, of course, on the magnitude of R, and it would
be valuable to explore th; effect of changes in R upon the transi-~
tiQn probabilities. Preliminary considerations in “he case of the
hydrogen-oxygen reactions suggest that we take R = 5, in which case
the expansion oij in a legendre serics leads to the following valuss

of the coefficients:

h = - 085’ 2 [ R 2 052’ .‘;3 = 2 0280
AO Ao A0
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If we take R = 10, we find

Al = ..90, &L . +.73 A1 .53
a 2 ~
Nc attempt has been made, at this stage, to evaluate the constant ﬂo)

its value will affect only ths absolute reactior rate and not the

relative values of the transition probabilities.



Appepdix II - Formylgs for Bessel Fupctiops
The forumlas for computing the Ressel functions are as
followss let 2 = |- 3 , aod lat

. %erc _33,’}_’
Af (})2 /f' r:a_ {.0703[ = ’-"2_"’“ + —-——i;—{-f R
32-§
= ’B# (a) : '24;‘& E//}'

For y < .85

(117 aotobtzl ] :
) ilpy)= & A (2)s B, (2]
)f L 24 /} Ii]%‘ /; P t

Tory >1015)
. g I T
9%”’3):#61 ,2,.&[»4,,(:)%5?[4:;’-%;1; ]-%

+B,(z)a~{¢[if!"‘-W‘“”’y’]"%} ] .

For .85< y%¢ 1,,15)
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The formulas for calculating the effect of small changes

in the orders of the Bessel functions are a3 follows:

For y < ,85,

, ] = ﬁe[uM l“,h = ZT!I'/’]
Frnaltal= - %)+ 2 ).

For y > 1,15)

(p.) = (1- 'fi) i
)f(on) "a) f'q HK

'[Af (2) con plie ™ ewctomst21™] - T 4 2,

133-15 3 . ” ny T
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